A Systematic Approach to Canonicity in the Classical Sequent Calculus

نویسندگان

  • Kaustuv Chaudhuri
  • Stefan Hetzl
  • Dale Miller
چکیده

The sequent calculus is often criticized for requiring proofs to contain large amounts of lowlevel syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature of sequent proofs forces proof steps that are syntactically non-interfering and permutable to nevertheless be written in some arbitrary order. The sequent calculus thus lacks a notion of canonicity: proofs that should be considered essentially the same may not have a common syntactic form. To fix this problem, many researchers have proposed replacing the sequent calculus with proof structures that are more parallel or geometric. Proof-nets, matings, and atomic flows are examples of such revolutionary formalisms. We propose, instead, an evolutionary approach to recover canonicity within the sequent calculus, which we illustrate for classical firstorder logic. The essential element of our approach is the use of a multi-focused sequent calculus as the means of abstracting away the details from classical cut-free sequent proofs. We show that, among the multi-focused proofs, the maximally multi-focused proofs that make the foci as parallel as possible are canonical. Moreover, such proofs are isomorphic to expansion proofs—a well known, minimalistic, and parallel generalization of Herbrand disjunctions—for classical firstorder logic. This technique is a systematic way to recover the desired essence of any sequent proof without abandoning the sequent calculus. 1998 ACM Subject Classification F.4.1 Mathematical Logic: Proof theory

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Isomorphism Between Expansion Proofs and Multi-Focused Sequent Proofs

The sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature of sequent proofs f...

متن کامل

A multi-focused proof system isomorphic to expansion proofs

The sequent calculus is often criticized for requiring proofs to contain large amounts of low-level syntactic details that can obscure the essence of a given proof. Because each inference rule introduces only a single connective, sequent proofs can separate closely related steps—such as instantiating a block of quantifiers—by irrelevant noise. Moreover, the sequential nature of sequent proofs f...

متن کامل

Canonical Sequent Proofs via Multi-Focusing

The sequent calculus admits many proofs of the same conclusion that differ only by trivial permutations of inference rules. In order to eliminate this “bureaucracy” from sequent proofs, deductive formalisms such as proof nets or natural deduction are usually used instead of the sequent calculus, for they identify proofs more abstractly and geometrically. In this paper we recover permutative can...

متن کامل

Canonicity results for mu-calculi: an algorithmic approach

We investigate the canonicity of inequalities of the intuitionistic mu-calculus. The notion of canonicity in the presence of fixed point operators is not entirely straightforward. In the algebraic setting of canonical extensions we examine both the usual notion of canonicity and what we will call tame canonicity. This latter concept has previously been investigated for the classical mu-calculus...

متن کامل

Classical Call-by-Need Sequent Calculi: The Unity of Semantic Artifacts

We systematically derive a classical call-by-need sequent calculus, which does not require an unbounded search for the standard redex, by using the unity of semantic artifacts proposed by Danvy et al. The calculus serves as an intermediate step toward the generation of an environment-based abstract machine. The resulting abstract machine is context-free, so that each step is parametric in all b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012